3,172 research outputs found

    Network MIMO with Partial Cooperation between Radar and Cellular Systems

    Full text link
    To meet the growing spectrum demands, future cellular systems are expected to share the spectrum of other services such as radar. In this paper, we consider a network multiple-input multiple-output (MIMO) with partial cooperation model where radar stations cooperate with cellular base stations (BS)s to deliver messages to intended mobile users. So the radar stations act as BSs in the cellular system. However, due to the high power transmitted by radar stations for detection of far targets, the cellular receivers could burnout when receiving these high radar powers. Therefore, we propose a new projection method called small singular values space projection (SSVSP) to mitigate these harmful high power and enable radar stations to collaborate with cellular base stations. In addition, we formulate the problem into a MIMO interference channel with general constraints (MIMO-IFC-GC). Finally, we provide a solution to minimize the weighted sum mean square error minimization problem (WSMMSE) with enforcing power constraints on both radar and cellular stations.Comment: (c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Microwave spectroscopy of the Mars atmosphere

    Get PDF
    A study of the use of millimeter-wavelength spectral transitions to investigate the atmosphere of Mars is presented. In the model experiments investigated it is assumed that a spectrometer in the frequency range from 100 to 260 GHz looks into a modest-sized telescope of from 30 to 50 cm aperture from a near-Mars orbit. The molecules H2O, CO, O2, O3, and H2O2 all have intense spectral lines in the Mars atmosphere in this frequency range and in addition are all very important in understanding the water cycle, the photochemistry, and the circularization in that atmosphere. It is shown that the altitude and the zonal distribution of H2O can be mapped even in atmospheric columns as dry as 0.25 precipital μm. Ozone can be mapped over the entire planet, independent of solar-lighting conditions, dust loading, or clouds in the atmosphere, because millimeter waves are insensitive to any particles that can be suspended in the Mars atmosphere. Because the signal-receiving techniques use superheterodyne devices and narrow spectral lines, zonal and meridional winds can be measured at altitudes above 10 km with a precision approaching approximately 3 m/s by the use of Doppler shifts. Temperature–pressure profiles can be measured to altitudes of 100 km by the use of CO lines in the limb-sounding mode

    Effects of radiation forces upon the attitude of an artificial earth satellite

    Get PDF
    Solar radiation effects on attitude of satellit

    Overlapped-MIMO Radar Waveform Design for Coexistence With Communication Systems

    Full text link
    This paper explores an overlapped-multiple-input multiple-output (MIMO) antenna architecture and a spectrum sharing algorithm via null space projection (NSP) for radar-communications coexistence. In the overlapped-MIMO architecture, the transmit array of a collocated MIMO radar is partitioned into a number of subarrays that are allowed to overlap. Each of the antenna elements in these subarrays have signals orthogonal to each other and to the elements of the other subarrays. The proposed architecture not only improves sidelobe suppression to reduce interference to communications system, but also enjoys the advantages of MIMO radar without sacrificing the main desirable characteristics. The radar-centric spectrum sharing algorithm then projects the radar signal onto the null space of the communications system's interference channel, which helps to avoid interference from the radar. Numerical results are presented which show the performance of the proposed waveform design algorithm in terms of overall beampattern and sidelobe levels of the radar waveform and finally shows a comparison of the proposed system with existing collocated MIMO radar architectures.Comment: accepted at IEEE WCN

    An Optimal Application-Aware Resource Block Scheduling in LTE

    Full text link
    In this paper, we introduce an approach for application-aware resource block scheduling of elastic and inelastic adaptive real-time traffic in fourth generation Long Term Evolution (LTE) systems. The users are assigned to resource blocks. A transmission may use multiple resource blocks scheduled over frequency and time. In our model, we use logarithmic and sigmoidal-like utility functions to represent the users applications running on different user equipments (UE)s. We present an optimal problem with utility proportional fairness policy, where the fairness among users is in utility percentage (i.e user satisfaction with the service) of the corresponding applications. Our objective is to allocate the resources to the users with priority given to the adaptive real-time application users. In addition, a minimum resource allocation for users with elastic and inelastic traffic should be guaranteed. Every user subscribing for the mobile service should have a minimum quality-of-service (QoS) with a priority criterion. We prove that our scheduling policy exists and achieves the maximum. Therefore the optimal solution is tractable. We present a centralized scheduling algorithm to allocate evolved NodeB (eNodeB) resources optimally with a priority criterion. Finally, we present simulation results for the performance of our scheduling algorithm and compare our results with conventional proportional fairness approaches. The results show that the user satisfaction is higher with our proposed method.Comment: 5 page
    • …
    corecore